
Code Instruction Selection based on SSA-Graphs

Erik Eckstein1, Oliver König1, and Bernhard Scholz2

1 ATAIR Software GmbH, Vienna, Austria
{eckstein, koenig}@atair.co.at

2 Institute of Computer Languages, Vienna University of Technology, Austria
scholz@complang.tuwien.ac.at

Abstract. Instruction selection for embedded processors is a challeng-
ing problem. Embedded system architectures feature highly irregular in-
struction sets and complex data paths. Traditional code generation tech-
niques have difficulties to fully utilize the features of such architectures
and typically result in inefficient code.
In this paper we describe an instruction selection technique that uses
static single assignment graphs (SSA-graphs) as underlying data struc-
ture for selection. Patterns defined as graph grammar guide the in-
struction selection to find (nearly) optimal results. We present an ap-
proach which maps the pattern matching problem to a partitioned boolean
quadratic optimization problem (PBQP). A linear PBQP solver computes
optimal solutions for almost all nodes of a SSA-graph.

We have implemented our approach in a production DSP compiler. Our
experiments show that our approach achieves significant better results
compared to classical tree matching.

1 Introduction

Highly specialized processors such as digital signal processors (DSP) or micro
controller systems feature irregularities in their instruction sets. Therefore code
generation for these processors is still a research topic and is not satisfying solved
so far.

In a traditional compiler framework code generation is decomposed in sev-
eral sub-problems. The main building blocks of a code generator are instruction

selection, instruction scheduling, and register allocation. First, a front end of a
compiler translates the source program into an intermediate representation. Af-
ter performing high-level optimizations, the instruction selector translates the
intermediate representation into target code. Instruction scheduling reorders the
target code to keep register pressure low and to utilize pipelining and parallel
units of the target architecture. Register allocation assigns hardware registers to
pseudo registers. Beside these three building blocks, most compilers for embed-
ded systems also perform additional optimizations to utilize target dependent
hardware features, e.g. addressing modes [3].

Tree pattern matching is a widely used technique for instruction selection [1].
Usually the unit of translation is a statement which is represented as a data flow

tree (DFT). A set of rules is used to match the DFT. The matcher selects those
rules such that the sum of all applied rule costs is a minimum. An algorithm
for tree pattern matching has two phases: labeling and reducing. In the label-
ing phase minimal costs are calculated for each node and each non-terminal.
This is done by checking each non-terminal combination in a bottom-up walk
of the tree. In the reduction phase the tree is traversed top-down and the rules
with minimal costs are selected. The tree matching algorithm employs dynamic

programming firstly introduced by BEG [8] and BURG [6]. The dynamic pro-
gramming approach is performed in linear time. Though this technique is fast,
it does not consider the computational flow of a function.

DAG matching is an extension to tree matching. Instead of trees, directed
acyclic graphs are considered. DAG matching is a NP-complete problem. A proof
for NP completeness of matching DAGs is given by [11]. In the work of Ertl [4] an
approach is presented, which modifies the tree pattern matcher algorithm so that
it can be used on DAGs. A checker proves whether the DAG matching algorithm
yields optimal results for a specific grammar. This approach differs from our
approach in some points: First, the algorithm does code duplication. Second, it
is not possible to perform the algorithm on a graph containing cycles, because it
still relies on the bottom-up and top-down phases of the tree pattern matcher.
DAG matching was also mapped to the binate covering problem [10]. However,
DAG matching still does not consider the computational flow of functions.

Beside the dynamic programming method, there are a number of special-
ized approaches for code generation with pattern matching. Leupers introduced
code selection for SIMD instruction generation, based on integer linear program-
ming [9].

This paper presents a new technique for instruction selection of code gen-
erators. In contrast to previous approaches the computational flow of a whole
function is taken into account. For representing the computational flow the SSA-
graph is used which combines data flow trees (DFT) and def-use relations of a
function. An ambiguous grammar describes possible derivations of the SSA-
graphs. Production rules have cost terms and code templates. Cost terms are
used to find the derivation with minimal overall costs. Unlike conventional ap-
proaches, parsing SSA-graphs is more difficult since cycles are allowed in the
graphs.

Parsing generic graphs is NP-complete since even parsing DAGs is NP-
complete [11]. To get a handle on the problem, we map the instruction selection
problem for SSA-graphs to partitioned boolean quadratic problem (PBQP). The
basic concept of our SSA-graph matching algorithm is shown in Figure 1. First,
the SSA-graph with its ambiguous grammar is mapped to PBQP. Second, the
PBQP solver computes the grammar derivation with minimal costs. Third, based
on the grammar derivation code is produced.

Note that the PBQP solver consists of two phases: In the first phase the graph
is reduced until a trivial solution remains. In the second phase the solution is
back-propagated. The two phases of the PBQP solver are very similar to the
two phases of the dynamic programming algorithm of tree pattern matchers.

2

solution
PBQP

graph propagation

backreduction
trivial
graph

model

generated

code

PBQP solver

code generator

application

rule

SSA−

graph
grammar

Fig. 1. Instruction Selection

In fact, if the PBQP-graph is a tree, the two algorithms are almost identical.
The significant difference is that a tree pattern matcher decides between non-
terminals whereas the PBQP solver decides between rules.

Though the PBQP is NP-complete our PBQP solver [12, 3] computes a solu-
tion in linear time. For a negligible number of SSA-graph nodes (see Section 5),
no optimal solution can be computed and heuristics are applied. Consequently,
the PBQP solution is nearly optimal.

Our approach goes beyond existing work by considering the computational
flow of a function. Based on SSA-graphs we can produce better code quality
in comparison to conventional techniques that only consider statements or se-
quences of statements. Experimental results show that we achieve significantly
better results compared with classical tree pattern matching methods.

Our paper is organized as follows. In Section 2 we motivate our approach. A
running example is shown. In Section 3 we map the instruction selection problem
to the Partitioned Boolean Quadratic Problem (PBQP). In Section 4 we give
a brief overview of the PBQP algorithm [12] and some specific extensions for
the algorithm. In Section 5 we show some experimental results of a production
compiler and in Section 6 we draw our conclusion.

2 Motivation

Consider the example in Figure 2 that shows a typical DSP code. The elements
of two vectors a and b are multiplied and the absolute value of the last iteration
is added. The example stresses the usage of accumulator variable s that occurs
in three statements. Note that the loop control code is abstracted in pseudo
code.

Let us assume that the computations for Variable s are performed in fixed
point arithmetic on a DSP processor. In contrast to standard processors, DSP
processors have multiplication units that perform a multiplication by shifting

3

int f(short *a, short *b)

{
(1) int s = 0;

loop(i) {
(2) s = abs(s) + a[i] * b[i];

}
(3) return s;

}

Fig. 2. Example Source Code

*

a[i] b[i]

+

s=

s

abs

0

s=

s

ret

Fig. 3. Data Flow Trees of Example

the result by one bit to the left. This multiplication idiosyncrasy was specifically
designed for DSP algorithms. However, for compilers it is difficult to exploit
this shift. Without knowing the context of the computation an additional shift
operation is needed to re-adjust the multiplication result.

For obtaining faster code, computations inside the loop should be performed
with a shifted result by one bit to the left. Otherwise an additional shift-operation
would be introduced inside the loop and would worsen runtime. Since the return
statement requires an un-shifted value, a shift operations has to be inserted prior
to the return statement outside of the loop.

To express architectural computation properties (e.g. shifted or un-shifted)
we use a graph grammar consisting of terminals, non-terminals, productions
and a start-symbol. Terminals represent specific nodes such as a plus opera-
tion, etc. Non-terminals describe sub-graphs and the productions describe how
non-terminals are derived and at which costs. Note that graph grammars are
ambiguous in most cases since several semantically correct code selections exist.
The objective of code selection is to find a grammar derivation for the graph
with minimal costs. For generic graphs this problem is NP-complete since even
for directed acyclic graphs it is already NP-complete [11]. Only for trees optimal
and efficient algorithms exist [5].

(1) reg → const(0)[],1,r=0

(2) sreg → const(0)[],1,r=0

(3) reg → +[reg,reg],3,r=r+r

(4) sreg → +[sreg,sreg],3,r=r+r

(5) reg → abs[reg],2,r=abs(r)

(6) sreg → abs[sreg],2,r=abs(r)

(7) sreg → *[reg,reg],4,r=r*r

(8) reg → load[ptr],5,r=*ptr

(9) top → ret[reg],1,ret

(10) reg → sreg,1,r=r>>1

(11) sreg → reg,1,r=r<<1

(12) reg → s[],0

(13) top → s=[reg],0

Fig. 4. Production Rules

4

For our running example the production rules are given in Figure 4. A produc-
tion has a left-hand side and a right-hand side, i.e. nt → pattern,cost,code .

On the left-hand side a non-terminal specifies the result of the computa-
tion. On the right-hand side there is a pattern that consists of terminals and
non-terminals. In addition the matching cost and the code template are given
(separated by commas). Note that the code templates are only shown for better
understanding of the rules, but they do not influence the matching algorithm.

In our grammar the shift property of the multiplication is represented by two
non-terminals: reg and sreg. Nonterminal reg represents an un-shifted value
whereas sreg represents a value which is shifted left by one bit. For example the
multiplication rule requires two un-shifted input values and produces a shifted
value. This is reflected in Rule 7. Plus operations and absolute value operations
can be performed with un-shifted values (Rules 3 and 5) or shifted values (Rules
4 and 6). The constant 0 can either be loaded as shifted or un-shifted value (Rules
1 and 2). The memory load is represented by Rule 8 and can only produce an un-
shifted value. Return statements require un-shifted values to preserve program
semantics (Rule 9). Rules 10 and 11 are chain-rules that convert a shifted value
to an un-shifted value and vice versa.

In the example three statements contain the accumulator variable s. Fig-
ure 3 shows the DFTs of the three statements which are processed by a typical
tree pattern matcher. Two additional rules are required to match the DFTs: a
rule to match variable uses (Rule 12) and a rule to match variable definitions
(Rule 13). But these rules can only exist for a single non-terminal (either reg or
sreg). Otherwise occurrences of a variable in various places would be interpreted
differently. This means that with a tree pattern matcher the non-terminals for
variables must be selected before matching.

To overcome the limitations of a tree pattern matcher we extend the scope of
the matcher to SSA-graphs [7]. The base for SSA-graphs is static single assign-

ment form [2]. The essential idea behind SSA is that each use has only a single
definition. If there are multiple definitions for a use in the non-SSA form, in the
SSA form a φ-term is inserted. Figure 5 shows the SSA form of our example
program. It contains a φ-term for s at the loop head where the definition of
the initialization and the definition of the computation of the last iteration are
merged.

A SSA-graph describes the flow of computation for a whole function. Ba-
sically, the data structure combines the data flow trees (DFT) with def-use
relations. For our running example the SSA-graph is shown in Figure 6. The
nodes in the graph represent computations. The outgoing edges from a compu-
tation indicate data dependencies to other nodes which use the computation.
Note that SSA-graphs do not contain explicit nodes for variable uses (s) and
variable definitions (s=). In contrast to classical approaches which use DAG and
tree representations of the computations, cycles are possible in the SSA-graphs.

For our running example we have several node types in the SSA-graph. E.g.,
plus operations(+), absolute value operations(abs), multiplications(*), element
access(a[i]), φ-nodes, constant nodes, and a return node(ret) for the return

5

int f(short *a, short *b)

{
(1) int s1 = 0;

loop(i) {
s2 = φ(s1, s3)

(2) s3 = abs(s2) + a[i] * b[i];

}
(3) return s2;

}

Fig. 5. SSA-Form of Running Example

*

a[i] b[i]

+ 0

φ

abs

ret

Fig. 6. SSA-Graph of Running Example

statement. The incoming edges specify the inputs of the computation. For ex-
ample, the multiplication node has two incoming edges. One edge is from the
operand a[i] the other edge is from the operand b[i]. In the SSA-graph all
nodes, except the return node, pass their result on to other nodes.

The grammars used for matching SSA-graphs are similar to grammars used
by tree pattern matchers [1]. As the SSA-graph does not contain explicit nodes
for variable uses and variable definitions, no rules are required to match such
nodes. Instead a grammar for SSA-graph matching must contain rules for match-
ing φ-terms. In the example grammar the Rules (12) and (13) are no longer
needed. Instead we need following rules to match the φ-term nodes.

(14) reg → φ(reg,. . .,reg),0

(15) sreg → φ(sreg,. . .,sreg),0

In contrast to matching rules of other nodes, φ-nodes do not emit any code.
They only need to match non-terminals of the same type. Rules 14 and 15
handle shifted and un-shifted values respectively for φ-nodes. As these rules do
not generate any code, they do not have a code template.

Because matching directed graphs is NP-complete, the code selection for
SSA-graphs is not a simple problem anymore. However, the optimization of the
computation flow of a whole function is superior to classical approaches where
only statements or sequences of statements are optimized.

3 Matching Problem

In this section we describe the mapping of the SSA-graph matching problem to
PBQP. In the first step of the mapping, the grammar is transformed to normal
form [1]. A grammar is in normal form if there are only production rules which are
either base or chain rules. A base rule has the form nt0 → P [nt1, . . . , ntn] where

6

nti are non-terminals and P is a terminal symbol. A chain rule is given by nt1
→ nt2 where on the left-hand side and on the right-hand side of the production
are non-terminals. Production rules, which are neither chain rules nor base rules,
can be decomposed into base and chain rules. For example rule reg → +[reg,

*[reg, reg]],2 is neither a base nor a chain rule. By introducing a new non-
terminal nt we can decompose the rule in reg → +[reg, nt],2 and nt →
*[reg, reg],0 .

For solving the matching problem we employ PBQP solver introduced in [12,
3]. The PBQP problem is defined as follows,

min f =





∑

1≤i<j≤n

xi · Cij · xj
T



 +





∑

1≤i≤n

ci · xi
T



 (1)

subject to: ∀i ∈ 1 . . . n : xi · 1
T = 1 (2)

where xi are boolean vectors for which only one element is set to one and n

is the number of vectors. Cij are cost matrices, and ci is a cost vector. The
aim of the optimization problem is to minimize costs. For each boolean vector
xi an element has to be chosen, such that the objective function f becomes a
minimum.

In [12] a graph-theoretical representation of the problem is introduced. The
PBQP-graph is a graph whose nodes represent boolean vectors (i.e. xi for node
i) and whose edges represent cost matrices that are unequal of the zero matrix.
For each node i in the PBQP-graph there is a decision which element of xi is
set to one. Different decisions for a vector xi contribute to different costs of the
objective function. Note that the number of the elements of the boolean vector
xi can vary.

The main idea of the mapping is that the PBQP-graph is equivalent to the
SSA-graph. For each node in the SSA-graph there are several base rule options.
The number of these alternatives determines the size of the boolean vector for
this node. The cost vector of this node is derived from the base rule costs of the
node. Edges in the PBQP-graph express cost dependencies between two nodes.
In our mapping an element in a cost matrix has several meanings: (1) It reflects
the transition from one rule to another one, i.e. from the result non-terminal of
one rule to an operand non-terminal of another rule nt1 → nt2. (2) The non-
terminal does not change, i.e. nt → nt. These cost elements are zero. (3) Some
transitions are not allowed in the grammar and we assign infinite costs to those
elements in the matrix.

The mapping from the SSA-graph matching problem is done in three steps:
(1) construct the PBQP-graph based on SSA-graph, (2) determine cost-vectors
of nodes, and (3) determine cost-matrices of edges.

As already mentioned the PBQP-graph is equivalent to the SSA-graph. Nodes
in the SSA-graph are nodes in the PBQP-graph and vice versa. Similarly, edges of
the PBQP-graph are edges in the SSA-graph. In our approach the computational
flow is represented as a graph where nodes represent functions and the incoming
edges of the node give the input of the function. However, graphs do not define an

7

order for incoming edges which is required for the correctness of our approach. To
overcome this problem, we define a mapping function opnum(e) that determines
the index of the operand of the edge e in the expression tree.

In the last two steps of the construction cost vectors and matrices for the
PBQP are computed. If the compiler should produce fast code, the cost model
has to consider dynamic execution weights for moving code from heavily exe-
cuted portions of the function to rarely executed portions. A weight function w

yields the execution weights for nodes and edges in the SSA-graph. The weight
function for nodes yields the dynamic execution count of the basic block where
the operation of the node is executed. For edges the weight function yields the
dynamic execution count of the basic block where the code of chain-rules is in-
serted. This might be either the basic block of the predecessor or successor node
of the edge. The weight function may also yield ∞ for edges where no chain-rule
code is applicable. E.g., this is the case for edges between two φ-terms.

For our example we assume that the loop is executed 10 times. This yields a
weight value of 10 for all nodes inside the loop, i.e. all nodes except 0 and ret.
Hence all edges, except the adjacent edges of 0 and ret have a weight value of
10. The nodes 0 and ret and their adjacent edges have a weight value of 1.

For each node we enumerate all applicable rules. The cost vector for the node
is the vector of rule costs scaled by the weight function.

Let Ri = {ri
1
, .., ri

n } be the set of matching rules for node i. For our example
all matching rules for its nodes are listed in Figure 7. As we can see that for some
nodes we have only one alternative which maps to a boolean decision vector with
only one element. For others we have two alternatives. Therefore, the size for
their boolean decision vectors is two.

Definition 1. Let cost(r) be the cost of rule r. Then, cost vectors are given as

follows

ci = (cost(ri
1
), .., cost(ri

n)) ∗ w(i)

where all rule costs are weighted by weight function w.

For our example the cost vectors of the matching rules are given in Figure 8.
For nodes inside the loop the cost elements are multiplied by 10 since we assume
that the loop is executed 10 times. For nodes outside the loop the weight function
yields one.

The last step in the PBQP definition is to determine the transition cost ma-
trices for all edges in the graph. For convenience we define a function chaincost,
which is used to get chain costs between two rules rather than between two
non-terminals.

Definition 2. Let r = ntr
0
→ P [ntr

1
, .., ntrn] and s = nts

0
→ Q[nts

1
, .., ntsm] be

base rules. Then, chaincost(r, s, i) = c, where c are minimal costs of all chain

rule derivations from ntr
0

to ntsi . If there is no chain rule derivation from ntr
0

to

ntsi , then c = ∞.

Function chaincost(r, s, i) yields the chain costs between the result non-
terminal of rule r and the ith source non-terminal of rule s. For chain-costs

8

Rret = { top → ret[reg] }
R0 = { reg → const(0)[], sreg → const(0)[] }
R+ = { reg → +[reg,reg], sreg → +[sreg,sreg] }
Rabs = { reg → abs[reg], sreg → abs[sreg] }
R* = { sreg → *[reg,reg] }
Ra[i] = Rb[i] = { reg → load[ptr] }
Rφ = { reg → φ[reg, reg], sreg → φ[sreg, sreg] }

Fig. 7. Matching Rule Sets of Running Example

between two identical non-terminals we have zero costs. If there are costs between
two different non-terminals it depends whether a derivation with chain-rule ex-
ists. If there exists at least one derivation, the chaining costs are determined
by the derivation with minimal costs. If no derivation exists, the transition is
prohibited and the chaining costs are ∞.

Based on function chaincost cost matrices of edges in the PBQP-graph are
computed. For each edge in the graph a cost matrix is determined. The elements
of a cost matrix are given as follows,

C<p,s>(i, j) = chaincost(rp
j , rs

i , opnum(< p, s >)) ∗ w(< p, s >)

where < p, s > is the edge, (i, j) is the row and column of the matrix, and r
p
j

and rs
i are the rules of node p and s.

A matrix of an edge contains the costs of a transition between the non-
terminals of two adjacent rules. The matrix element cij defines the costs of
applying chain rules from the result non-terminal of the predecessor rule ri and
the source non-terminal of the successor rule rj . The selection of the source non-
terminal in the successor rule pattern is determined by the opnum function for
the edge.

For our example the cost matrices are given in Figure 9. The matrix C<abs,+>

contains a zero diagonal, the remaining elements are 10. Both the abs and +

nodes have two rules, where the first rules only contain reg non-terminals and
the second rules only contain sreg non-terminals. The transition costs between
the first rule of abs and first rule of + are the chain rule costs of deriving reg

from reg. Obviously this is zero. The same holds for the transition costs between
the second rules. All other transitions need a chain rule from reg to sreg or vice
versa. The rule costs for these chain rules are one, which is weighted by 10 (the
execution count of the loop).

4 PBQP Solver

A PBQP Solver was already introduced in [12]. The solver works in two phases.
In the first phase reduction rules are applied to nodes with degree one and
two (ReduceI and ReduceII reductions). ReduceI reduction eliminates a node
i of degree one. The node’s cost vector ci and the adjacent cost matrix Cij

9

cret = (1)
c0 = (1, 1)
c+ = (30, 30)
cabs = (20, 20)
c* = (40)
ca[i] = cb[i] = (50)
cφ = (0, 0)

Fig. 8. Cost Vectors of Example

C<a[i],*> = C<b[i],*> = (0)
C<*,+> = (10, 0)

C<0,φ> =

(

0 1
1 0

)

C<abs,+> = C<+,φ> = C<φ,abs> =

(

0 10
10 0

)

Fig. 9. Transition Costs of Example

are transferred to the cost vector cj of the adjacent node j. ReduceII reduction
eliminates a node i of degree two. The node’s cost vector ci and the two adjacent
cost matrices Cij and Cik are transferred to the cost matrix of the edge between
the adjacent nodes j and k.

These reductions do not destroy the optimality of the PBQP. If the reduction
with ReduceI and ReduceII is not possible, i.e. at some point of the reduction
process there are only nodes with degree three or higher in the graph, a heuristic
must be applied (ReduceN reduction). The heuristic selects the local minimum
for the chosen node and eliminates the node. The reduction process is performed
until a trivial solution remains, i.e nodes with degree zero are left. Then the
solution of the remaining nodes is determined. In the second phase, the graph
is re-constructed in reverse order of the reduction phase and the solution is
back-propagated.

In addition to the solver presented in [12] we perform simplification reduc-
tions: (1) elimination of nodes which have only one cost vector element and (2)
elimination of independent edges. Both steps reduce the degree of nodes in the
graph and have a positive impact for the obtaining a (nearly) optimal solution.

The first simplification step removes nodes which have only one element in
boolean decision vector. This situation occurs if there is only one rule applicable
for a node in the SSA-graph. Since there is no alternative for such a node, the
node can be removed from the graph. The contribution of such a node collapses
to a constant in the objective function and the node does not influence the
global minimum. This process is equivalent to splitting a node into separate
nodes for each adjacent edge, which are then reduced by ReduceI reductions
(see Figure 10).

In our example all nodes, which have only one matching rule, can be elimi-
nated by simplification. These nodes are ret, *, a[i] and b[i]. With the first
simplification step the cost vectors of φ-nodes and + change to the following
values:

c+ = (40, 30)
cφ = (0, 1)

The second simplification step eliminates edges with independent transition
costs. Independent transition costs are costs which do not result in a decision

10

a b c

Fig. 10. Elimination of a node with a single rule (a). The node is split (b), the split
nodes can be reduced with ReduceI (c)

dependence between the two adjacent nodes, i.e. the rule selection of one adjacent
node does not depend on the rule selection of the other adjacent node. A simple
example for independent transition costs is a zero matrix. In general all matrices
which can be made to a zero matrix by subtracting a column vector and a row
vector are independent.

Lemma 1. Let C be a matrix and u and v be vectors. The matrix C is inde-

pendent iff

C =







u1 + v1 . . . u1 + vm

...
. . .

...

un + v1 . . . un + vm






.

An independent edge is eliminated by adding u to the predecessor cost vector
and adding v to the successor cost vector.

Figure 11 shows the reduction sequence of the example graph. The *, a[i],
b[i] and ret nodes are already eliminated by simplification, because only a
single rule can be matched on these nodes. The remaining graph contains one
node with degree one, i.e. node 0. In the first step it is eliminated by ReduceI
reduction. This increments the cost vector of the φ-node to (1, 2). Three nodes
with degree 2 remain (φ, + and abs). One of them - in this example the abs

node - is eliminated by applying ReduceII reduction. The resulting edge of the
reduction has a cost matrix of

C<φ,+> =

(

20 30
30 20

)

It is combined with the existing edge between φ and + which results in

C<φ,+> =

(

20 40
40 20

)

In the last step the φ-node can be eliminated with ReduceI reduction which
results in a cost vector of (61, 52) for the remaining node +. It has degree zero and
the second rule (sreg → +[sreg,sreg]) can be selected, because the second
vector element (which is 52) is the element with minimal costs. Because no

11

+ 0

φ

abs

φ

+

abs

φ

+ +

Fig. 11. Reduction Sequence of Running Example

(1) f:

(2) r0 = 0;

(3) loop {
(4) r1 = *ptr1

(5) r2 = *ptr2

(6) r3 = r1 * r2

(7) r0 = abs(r0)

(8) r0 = r0 + r3

(9) }
(10) r0 = r0 >> 1

(11) ret

Fig. 12. Resulting Code

ReduceN reduction had to be applied for the example graph, the solution of this
PBQP is optimal.

After reduction only nodes with degree zero remain and the rules can be
selected by finding the index of the minimum vector element. The rules of all
other nodes can be selected by reconstructing the PBQP graph in reverse order
of reductions. In each reconstruction step one node is re-inserted into the graph
and the rule of this node is selected. Selecting the rule is done by choosing the
rule with minimal costs for the node. This can be done, because the rules of all
adjacent nodes are already known.

The back-propagation process for our example graph reconstructs the φ-node.
The second rule is selected for this node (sreg → φ[sreg, sreg]). Then the
abs and 0 nodes are re-inserted, with a rule selection of sreg → abs[sreg]

and sreg → const(0)[] respectively. The nodes ret, *, a[i] and b[i] need
not be reconstructed, because the first (and only) rule has already been selected
in the simplification phase for these nodes.

The solution of the PBQP yields the rule selections for the SSA-graph nodes.
The code can be generated by applying the code generation actions of the selected
rules. As the SSA-graph does not contain any control flow information, the places
where the code is generated must be derived from the input program. So the code
for a specific node is generated in the basic block which contains the operation
of the node. The order of code generation within a basic block is also defined by
the statement order and operator order in the input program.

Figure 12 shows the resulting code after register allocation (for clarity the
loop control code and addressing code is not shown in this figure). As we can
see in the generated code, inside the loop the addition operation and the abs
function is performed with a shifted value. Prior to the return statement the
value of variable s is converted to an un-shifted value.

12

5 Experimental Results

We have integrated the SSA-graph pattern matcher within the CC77050 C-
Compiler for the NEC µPD77050 DSP family. The µPD77050 is a low-power DSP
for mobile multimedia applications that has VLIW features. Seven functional
units (two MAC, two ALUs, two load/store, one system unit) can execute up
to four instructions in parallel. The register set consists of eight 40 bit general
purpose registers and eight 32 bit pointer registers.

The grammar contains 724 rules and 23 non-terminals. The non-terminals
select between address registers or general purpose registers. For the general pur-
pose registers there are separate non-terminals for sign-extended values and non-
sign-extended values and there are various non-terminals which place a smaller
value at different locations inside a 40 bit register.

We have conducted experiments with a number of DSP benchmarks. The first
group of benchmarks contains three complete DSP applications: AAC (advanced
audio coder), MPEG, and GSM (gsm half rate). All three benchmarks are real-
world applications that contain some large PBQP graphs. The second group of
benchmarks are DSP-related algorithms of small size. These kind of benchmarks
allow the detailed analysis of the algorithm for typical loop kernels of DSP
applications. All benchmarks are compiled “out-of-the-box”, i.e. the benchmark
source codes are not rewritten and tuned for the CC77050 compiler.

In Table 1 the number of the graphs (graphs num.) and the sizes of the
graphs are given. In the “num.” columns the accumulated values over the whole
benchmark is shown and in the “max.” columns the maximum value over all
graphs is given. The total number of cost vector elements in the graph and the
maximum number of cost vector elements for each node is shown in the last two
columns. The number of cost vector elements is the number of matching rules of
a node. These numbers depend on the used grammar. With our test grammar a
maximum of 62 rules per node occurs in the graphs.

An important question when using a PBQP solver arises regarding the quality
of the solution. It highly depends on the density of the PBQP graphs. If a
graph can be reduced with ReduceI and ReduceII rules, the solution is optimal.
Figure 13 shows the distribution of reductions. 31% of nodes can be eliminated
by simplification, because they are trivial, i.e. only a single rule can match these
nodes. Another important observation is that only a small fraction (less than
1%) of all nodes are ReduceN nodes. Therefore the solutions obtained from
the PBQP solver are near optimal. The distribution of nodes in Figure 13 also
shows the structure of the PBQP-graph: The fraction of degree zero nodes (R0)
indicates the number of independent sub graphs in the SSA-graphs, i.e. a third
of the nodes form own sub-graphs. ReduceI nodes (RI) are nodes which are
part of a tree, whereas ReduceII (RII) and ReduceN (RN) nodes are part of
a more complex subgraph. In addition, 37% of all edges can be eliminated by
simplification, because they contain independent transition costs.

An effective way to improve the solution is to recursively enumerate the
first ReduceN nodes in a graph. In many graphs only few ReduceN nodes exist
and by moderate enumeration an optimal solution can be achieved. We have

13

performed our benchmarks in three different configurations: (1) reducing all Re-
duceN nodes with heuristics (H), (2) enumerate the first 100 permutations before
applying heuristics (E 100) and (3) enumerate the first two million permutations
(E 2M) before applying heuristics. The third configuration can yield the opti-
mal solution in almost all cases. It is used to compare the other configurations
against the optimum. Table 2 shows the percentages of optimally solved graphs
and optimally reduced nodes in each configuration. The left columns (gropt)
show the percentage of optimally solved graphs in each benchmark, the right
columns (rnopt) show the percentage of ReduceN nodes, which are reduced by
enumeration and do not destroy the optimality of the solution. A value of 100%
is also given if there are no ReduceN nodes in a benchmark. In the first configu-
ration (H) no enumeration was applied therefore all ReduceN nodes are reduced
with the heuristics (0% in the H/rnopt column or 100% if there are no ReduceN
nodes in a benchmark). Even without enumeration most of the graphs (H/gropt)
can be solved optimally. The results of the second configuration (E 100) show
that with a small number of permutations almost all graphs (E 100/gropt) and
a majority of ReduceN nodes (E 100/rnopt) can be solved optimal.

For the performance evaluation we compare the SSA-graph matcher with
a conventional tree pattern matcher, using the same grammar. For the tree-
pattern matcher we had to make a pre-assignment of non-terminals to local
variable definitions and uses. We assigned the most reasonable non-terminals
to local variables, e.g. a pointer non-terminal to pointer variables, a register
low-part non-terminal to 16 bit integer variables, etc. This is how a typical tree
pattern matching would generate code. The performance improvements for all
three configurations is shown in Figure 14. The configuration which enumerates
100 permutations gives a (marginal) improvement in just one benchmark(AAC).
And the near optimal configuration does not improve the result anymore. This
indicates that the heuristic for reducing ReduceN nodes is sufficient for this
problem. The performance improvement for the small benchmarks is higher than
for the large applications, because the applications contain much control code
beside the numerical loop kernels.

The compile time overhead for the three DSP applications is shown in Ta-
ble 3 (the compile time overhead for the small DSP algorithms is negligible and
therefore not shown). The table compares the total compile time of two compil-
ers, the first with SSA-graph matching, the second with tree pattern matching.
The table contains the compile time overhead of the SSA-graph matching com-
piler to the tree matching compiler in percent for all three configurations. The
overhead of the first two configurations (H and E 100) is equivalent. This means
that it is feasible to allow a small number of permutations for ReduceN nodes.

6 Summary and Conclusion

For irregular architectures such as digital signal processors, code generators con-
tribute significantly to the performance of a compiler. With traditional tree pat-
tern matchers only separate data flow trees of a function can be matched, which

14

Trivial
31%

R0
28%

RI
30%

RII
11%

RN
~0%

Fig. 13. Reduction Statistics

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

m
p3

gs

m

aa
c iirc

iirb
iqc

m
at

m
ult

va
dd

vd

ot

vm
in

vm
ult

vn
or

m

Heuristic
Enumeration 100
Enumeration 2M

Fig. 14. Performance Improvement

Graphs Nodes Edges vec. elements
Benchmark num. num. max. num. max. num. max.

mp3 60 37197 8491 40321 8854 556819 62
gsm 129 71376 24175 76884 26154 1138903 62
aac 71 25875 13093 26886 13523 405220 62
iirc 1 263 263 271 271 4877 62
iirbiqc 4 986 493 1002 501 17760 62
matmult 2 640 320 656 328 12182 62
vadd 2 244 122 242 121 4390 33
vdot 2 268 134 268 134 4812 62
vmin 2 306 153 304 152 5652 33
vmult 2 276 138 274 137 4976 62
vnorm 2 252 126 252 126 4590 62

sum/max 277 137683 24175 147360 26154 2160181 62

Table 1. Problem Size

15

H E 100 E 2M
Benchmark gropt rnopt gropt rnopt gropt rnopt

mp3 83.33 0.00 98.33 54.76 98.33 73.81
gsm 93.02 0.00 99.22 82.35 100.00 100.00
aac 91.55 0.00 98.59 75.00 100.00 100.00
iirc 0.00 0.00 100.00 100.00 100.00 100.00
iirbiqc 50.00 0.00 100.00 100.00 100.00 100.00
matmult 100.00 100.00 100.00 100.00 100.00 100.00
vadd 100.00 100.00 100.00 100.00 100.00 100.00
vdot 100.00 100.00 100.00 100.00 100.00 100.00
vmin 100.00 100.00 100.00 100.00 100.00 100.00
vmult 100.00 100.00 100.00 100.00 100.00 100.00
vnorm 100.00 100.00 100.00 100.00 100.00 100.00

Table 2. Optimal Graph and Node Reductions in Percent

Benchmark H E 100 E 2M

mp3 14 14 4252
gsm 6 6 7
aac 3 3 349

Table 3. Compile time overhead in percent

has a negative impact for the quality of the code. Only if the whole computa-
tional flow of a function is taken into account, the matcher is able to generate
optimal code.

Matching SSA-graphs is NP-complete. For solving the matching problem we
employ the partitioned boolean quadratic problem (PBQP) for which an effective
and efficient solver [12] exists. The solver features linear runtime and only for
few nodes in the SSA-graph heuristics needs to be applied. As shown in our
experiments the PBQP solver has proven to be an excellent vehicle for graph
matching. For a small fraction of the SSA-graphs a heuristic has to be applied.

Our experiments have shown that the performance gain of a SSA-graph
matcher compared to a tree pattern matcher is significant (up to 82%) in com-
parison to classical tree matching methods. These results were obtained without
modifying the grammar. Though the overhead of the PBQP solver is higher than
tree matching methods, the compile time overhead is in acceptable bounds.

References

1. S. Biswas A. Balachandran, D. M. Dhamdhere. Efficient retargetable code genera-
tion using bottom-up tree pattern matching. Computer Languages, 15(3):127–140,
1990.

2. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. In ACM, editor, POPL ’89.

16

Proceedings of the sixteenth annual ACM symposium on Principles of programming
languages, January 11–13, 1989, Austin, TX, pages 25–35, New York, NY, USA,
1989. ACM Press.

3. E. Eckstein and B. Scholz. Address mode selection. In Proceedings of the Interna-
tional Symposium of Code Generation and Optimization (CGO’03), San Francisco,
March 2003. IEEE/ACM.

4. M. Anton Ertl. Optimal code selection in DAGs. In Principles of Programming
Languages (POPL ’99), 1999.

5. C. Fraser, R. Henry, and T. Proebsting. BURG – fast optimal instruction selection
and tree parsing. ACM SIGPLAN Notices, 27(4):68–76, April 1992.

6. Christopher W. Fraser and David R. Hanson. A code generation interface for ANSI
c. Software - Practice and Experience, 21(9):963–988, 1991.

7. Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction variables:
Detecting and classifying sequences using a demand-driven SSA form. ACM Trans-
actions on Programming Languages and Systems, 17(1):85–122, January 1995.

8. Rudolf Landwehr Helmut Emmelmann, Friedrich-Wilhelm Schrer. Beg - a gener-
ator for efficient back ends. SIGPLAN ’99 Conference on Programming Language
Design and Implementation, pages 227–237, 1989.

9. Rainer Leupers. Code generation for embedded processors. In ISSS, pages 173–179,
2000.

10. S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. Instruction selection using binate
covering for code size optimization. In International Conference on Computer
Aided Design, pages 393–401, Los Alamitos, Ca., USA, November 1995. IEEE
Computer Society Press.

11. Todd A. Proebsting. Least-cost instruction selection in dags is np-complete.
http://research.microsoft.com/˜ toddpro/papers/proof.htm.

12. B. Scholz and E. Eckstein. Register allocation for irregular architecture. In Pro-
ceedings of Languages, Compilers, and Tools for Embedded Systems (LCTES’02)
and Software and Compilers for Embedded Systems (SCOPES’02), Berlin, June
2002. ACM.

17

