
Addressing Mode Selection

Erik Eckstein
ATAIR Software GmbH,

Vienna, Austria
eckstein@atair.co.at

Bernhard Scholz
Vienna University of Technology

Vienna, Austria
scholz@complang.tuwien.ac.at

Abstract

Many processor architectures provide a set of addressing
modes in their address generation units. For example DSPs
(digital signal processors) have powerful addressing modes
for efficiently implementing numerical algorithms. Typical
addressing modes of DSPs are auto post-modification and
indexing for address registers. The selection of the optimal
addressing modes in the means of minimal code size and
minimal execution time depends on many parameters and is
NP complete in general.

In this work we present a new approach for solving the
addressing mode selection (AMS) problem. We provide a
method for modeling the target architecture’s addressing
modes as cost functions for a partitioned boolean quadratic
optimization problem (PBQP). For solving the PBQP we
present an efficient and effect way to implement large ma-
trices for modeling the cost model.

We have integrated the addressing mode selection with
the Atair C-Compiler for the uPD7705x DSP from NEC. In
our experiments we show that the addressing mode selec-
tion can be optimally solved for almost all benchmark pro-
grams and the compile-time overhead of the address mode
selection is within acceptable bounds for a production DSP
compiler.

1 Introduction

In contrast to RISC architectures, embedded CPU archi-
tectures have addressing generation units facilitating a vari-
ety of addressing modes. For example digital signal proces-
sors (DSP) have powerful addressing modes for efficiently
implementing signal processing applications. While there
is a shift from assembly code to codes written in a high-
level language such as C, it is the task of the compiler to
generate highly optimized code that fully exploits address-
ing mode features of the CPU. In the past only little work
has addressed this problem.

In this paper we propose a compiler optimization called

(1) loop {
(2) ar0++

if (c) {
(3) *ar0

} else {
(4) *(ar0 + 1)

}
(5) *(ar0 + 2)
(6) }

=⇒

(1) ar0++
(2) loop {

if (c) {
(3) *(ar0 += 2)

} else {
(4) ar0++
(5) *ar0++

}
(6) *ar0--

}
(7) ar0--

(a) (b)

Figure 1. Running Example

Addressing Mode Selection (AMS) that selects the optimal
addressing mode for addressing registers in the input pro-
gram. The optimization can be parameterized for different
objectives such as execution time and code size.

Consider the pseudo code of our running example in Fig-
ure 1(a). The goal is to optimize the addressing modes
of register ar0. The underlying target architecture sup-
ports indirect addressing mode *(ar), post modification
addressing mode *(ar0++), *(ar0--), *(ar0+=c)1,
and indexing addressing mode *(ar+c).

For sake of simplicity we assume that post modification
can be executed without additional overhead. The index-
ing addressing mode (ar + c) has a worse pipeline char-
acteristics than post modification and a longer instruction
encoding as well. An explicit add instruction for address
register ar0 needs considerable more time than employing
addressing modes and should be avoided in general.

In the example of Fig. 1(a) the loop is executed 10 times
and the condition c is true in 7 iterations and false in 3 iter-
ations. The optimal output program for minimal execution
time is shown in the same figure on the right-hand side. The

1In contrast to C++ or Java, the += operator has a post modification
semantic in this paper.

add instruction can be moved out of the loop and post mod-
ification addressing modes can be used instead of indexing
addressing modes in line (5) and (6). An explicit add in-
struction for the address register must be prior to the loop
and in line (4), but this takes less cycles than the code given
in the original program.

In our experience we have seen that the AMS is a very
important problem for embedded system processors. We
have integrated AMS with an industrial C-Compiler for
the NEC uPD7705x digital signal processor family and
used typical digital signal processing applications. The ex-
periments show that code-size reductions up to 50% and
speedups of more than 60% are achievable.

As far as the authors are aware of there is only little pre-
vious work dedicated to AMS. An approach to the prob-
lem is presented in [2] where the AMS is embedded in the
problem of live range merging. Live range merging tries
to utilize all available address registers to minimize update
instructions in a loop. The used technique is called live
range growth (LRG) and uses a merge operator which de-
termines the costs of merging. This merge operator is the
crucial point in the algorithm and in fact performs address-
ing mode selection for determining the costs of merging. A
φ-dependence graph, which is derived from a static single
assignment form (SSA) is employed for solving the prob-
lem. The limitations of this work is that the algorithm only
works for a single loop and heuristics are applied if the φ-
dependence graph is not a tree. Another approach is pre-
sented in [5] that also is limited to the scope of a loop. In
the work of [1], the problem of addressing mode selection
is solved for the scope of a whole control flow graph. How-
ever, the used algorithm imprecisely models the address-
ing mode selection and may produce sub-optimal results.
Moreover, there is no precise model of costs in [2, 5, 1].
In the context of AMS there are related problems that are
not addressed in this work and can be seen as orthogonal
techniques like live range merging [2] and offset assign-
ment [3, 7, 6]. In the work of Surdarsanam [4] care is taken
for assigning offsets for exploiting the addressing modes.
Still this technique can be seen as pre-pass of our approach.

The AMS turns out to be a hard problem mainly for two
reasons: First, even if we assume a very simple architec-
ture, the AMS is NP complete, which was shown by [2].
Second, in practice the addressing modes of embedded sys-
tem processors are very manifold and in-homogeneous. To
overcome the obstacle of previous work our new approach
has following features: (1) a flexible cost model for differ-
ent optimization goals, e.g. runtime and code-size, (2) a
wide range of different addressing modes can be modeled,
(3) the scope of the optimization is a whole CFG, not only
a loop, and (4) the experiments indicate that AMS can be
optimally solved for nearly all programs in the benchmark
suite.

The structure of the paper is as follows. In Section 2 the
model of cost for the AMS is presented. In Section 3 the
algorithm for the optimization is introduced. In Section 4
we present our experiments. In the last section we draw our
conclusion.

2 Modeling of the AMS problem

The AMS problem can be performed for every address
register of the target architecture separately, achieving the
same final result. In the following we refer to the currently
optimized address register as the address register. The input
for the AMS algorithm is the control flow graph (CFG) of
a program whereby each CFG node represents an instruc-
tion. For each node in the CFG, the AMS algorithm decides
which addressing mode is the best based on a cost model for
each node. This decision cannot be done locally as demon-
strated in our running example of Figure 1.

For a better understanding we give some examples of
widely used addressing modes and explain how to construct
a cost model for a simplistic CPU architecture (in Section 4
we show results of a complex full-blown embedded system
processor). An addressing mode is the method of generat-
ing an address in the address generation unit of the target
architecture. The addressing mode defines how the address
is calculated from the address register value and how the
address register is modified when generating the address2.

The basic addressing mode is indirect addressing. The
memory is accessed at the address value of the address reg-
ister and the address register is not modified. We denote the
address value as the access value. E.g., a load from memory
into general purpose register r1 is given by r1 = *ar0.

The input program may contain instructions that use an
address register, but do not access memory. For example
moving an address value to a general purpose register (r1
= ar0). For the AMS model it does not matter if an in-
struction performs a memory access or not. Therefore, for
the model such instructions are equivalent to indirect ad-
dressing. The access value is the value of the address reg-
ister in the input program, although there is no memory ac-
cess.

Post increment and post decrement addressing modes are
basically the same as the indirect addressing mode, except
that the address register is incremented or decremented af-
ter the memory access, respectively. Usually the increment
or decrement value is equal to the access size in memory.
These addressing modes are useful for sweeping over an
array in a loop. Examples are r1 = *ar0++ or r1 =
*ar0--.

A more general form is the post modification addressing
mode. In contrast to the post increment/decrement address-

2We do not consider addressing modes which do not involve address
registers, like direct addressing.

2

ing modes, the modification value can be specified explic-
itly within a given range, e.g. r1 = *(ar0+=2). The
available range for the modification value depends on the
architecture. Usually it is only a subset of the whole ad-
dress space. The drawback of this addressing mode is that
it needs more coding space compared to the post incre-
ment/decrement modes.

Some architectures provide an indexed addressing mode.
The access value is obtained by adding a constant offset to
the address register value, but the value of the address reg-
ister is not changed, e.g. r1 = *(ar0+2). The indexed
addressing mode implies an addition before accessing the
memory that may result in pipeline hazards.

In many architectures both the post modification and
indexed addressing modes are also available with an off-
set register instead of an immediate value as shown in
the following example: r1 = *(ar0+=r0) and r1 =
*(ar0+r0). The offset register variants need some spe-
cial treatment in the cost model by defining pseudo values
for the offset registers in the value domain3.

For the AMS problem, add instructions have a great po-
tential for optimizing the code. First, add instructions might
be eliminated by address modes. For example the code se-
quence r0=*ar;ar++; can be replaced by r0=*ar++,
which saves one instruction. Second, an add instruction
might be inserted by the AMS algorithm to optimize the
program at another place that is executed more frequently.
E.g., an add instruction is inserted at node (4) in Figure 1 for
obtaining a better code inside the more frequently executed
then-branch of the if-statement. In contrast to addressing
modes, add instructions do not have an access value.

Definitions of address register have to be handled by the
AMS as well. Definitions, e.g. initializing an address regis-
ter before a loop, are different from addressing modes and
add instructions because the value of the address register is
arbitrary before the definition. Note that the access value
of a definition is the value that is assigned to the address
register.

Finally, nodes in the CFG, which do not contain address
registers, can be treated as an add instruction with zero in-
crement. If the AMS algorithm selects a constant different
from zero, an explicit add instruction must be inserted.

Let us consider two subsequent statements
stmt1;stmt2. Both statements use address register
ar for accessing memory and modify the value of the
address register. Now, the principle idea of AMS is to
shift the value of ar between those two statements. We
replace stmt1 by stmt1’ and statement stmt2 by
stmt2’. The semantics of stmt1’ and stmt2’ are
given by stmt1;ar+=∆ and ar-=∆;stmt2, respectively.
Depending on the offset value ∆, cheaper addressing
modes might be employed for both statements. This is

3This extension of the model is not further elaborated in this work.

 Before

access value
of stmt2

access value
of stmt1

stmt1 stmt2

value of ar

value of ar

stmt1’ stmt2’

After

Figure 2. Shift of Address Register

achieved by replacing the increment of the address register
and the prior address operation by a cheaper addressing
mode (also known as strength reduction).

In Figure 2 the shift of ar is illustrated. The first graph
depicts the modification and memory access with address
register ar. The access values of both statements are also
given. In the second graph (below the first one) we perform
the shift of address register ar. In the figure we can see that
access values of both statements will not change, albeit the
value of ar between both statements has changed.

For a statement we have two offset values: One offset
relates to the relative address shift before the statement —
the other offset relates to the relative address shift after the
statement. Based on this observation we introduce the defi-
nition of addressing mode as follows.

Definition 1 Addressing mode am is a set of value pairs
{〈e1, x1〉 , . . . , 〈en, xn〉}. Each pair defines an entry and
exit offset for the address register.

The definition above gives for an addressing mode a set
of permitted entry and exit offsets. This means, an origi-
nal statement stmt is rewritten by a new statement stmt’
that employs an addressing mode. The program seman-
tics of stmt’ is given by ar-=e;stmt;ar+=x for a pair
(e, x) ∈ am. Note that some of the addressing modes can
be parameterized and therefore more than one pair of offset
values might be in am. For example an indirect memory ac-
cess *(ar) may be replaced by the post-increment mem-
ory access *(ar++). The set am of *(ar++) contains
only one pair, i.e. < 0, 1 > since the addressing mode is
not parameterizable. Contrarily, the post-increment mem-
ory access with a constant, i.e. *(ar+=c), induces more
than one pair. The number of pairs is given by number of
elements in the number domain of c.

In the following table we list examples of addressing
mode sets for the previously introduced addressing modes.
We assume that the original statement is a simple indirect
memory access, e.g. r0=*(ar).

3

Indirect addressing:
am(*ar) = {〈0, 0〉}

Post increment:
am(*ar++) = {〈0, 1〉}

Post decrement :
am(*ar--) = {〈0,−1〉}

Post modification for c ∈ {l, . . . , u}:
am(*(ar+=c)) = {〈0, l〉 , . . . , 〈0, u〉}

Indexing for c ∈ {l, . . . , u}:
am(*(ar+c)) = {〈−l,−l〉 , . . . , 〈−u,−u〉}

Note that variables l, u gives a number range for c of the
post modification addressing mode and the indexing ad-
dressing mode. This number range is normally smaller than
the addressing domain of the CPU in order to keep the in-
struction word small.

The addressing modes of statement r0=*(ar) can
be easily adopted for other statements. For example if
the original statement is a indexing addressing mode, i.e.
r0=*(ar+c), the values of the pairs are simply shifted by
the constant c.

Another class of statements are statements which have
no side-effect on the address register and do not access
memory with ar. As already mentioned this statements can
be treated as add instructions with zero increment. The ad-
dressing mode is given as follows

am(ar+=c) = {〈i, i+ c〉 |i ∈ D}
where D is the domain of available values of the address
register Usually D contains all values an address register
may contain, e.g. |D| = 216 for 16 bit address registers.
As the set D is very large, the implementation of the cost
model, needs to be represented in a compact form (see Sec-
tion 3).

For statements, which contain an add instruction
ar+=c1, we simply adopt the addressing mode above by
shifting the offset values in am.

am(ar+=c2) = {〈i− c1, i+ c2 − c1〉 |i ∈ D}
Definition of addressing registers allow an arbitrary entry

offset and only the exit offset must be zero. Therefore, the
addressing mode of an definition is given by am(ar=c) =
{〈i, 0〉 |i ∈ D}.

Memory accesses and address modification of the input
program can be rewritten by several address modes with dif-
ferent costs. Basically, we are interested in choosing ad-
dress modes for the input programs such that the overall
costs are minimal. Note that the selection of an addressing
mode is not a local decision because it induces offset con-
straints for the entry and exit offsets. Preceding and suc-
ceeding statements must have matching offset values – oth-
erwise program semantics is destroyed.

b b

c c

a

a

a

2

43

5

6

1

=⇒
b

c

a

1

2

4

5

3

6

(a) (b)

Figure 3. CFG and PBQP graph of example

For a given offset pair of a statement we have several
ways to rewrite the associated statement for obtaining the
offset shift at the entry and at the exit. However, we want
to have the addressing mode with minimal costs for a state-
ment and a given offset pair. Some statements do not allow
addressing modes for a given offset pair. In this case we
assign infinite costs to the offset pair.

To express the costs of addressing modes, matrices are
employed. An offset pair is associated with an element of
a cost matrix, i.e. element C(i, j) of matrix C gives the
costs for the cheapest addressing mode for the offset pair
< i, j >. Note that the values of i and j might also be
negative. To get positive row and column indices a mapping
function is required, e.g. the minimum negative value in D
is subtracted, etc.

We can now formulate the cost matrices for our example
in Section 1. Figure 3(a) shows the CFG of the input pro-
gram. We assign costs of 0 for the post modification mode
and costs of 0.2 for the indexing mode, because indexing
has worse characteristics than post modification (e.g. larger
coding). Inserting an add instruction contributes with costs
of one. From the assumed loop iteration count of 10 and the
condition evaluation of 7 times true we get node weights
of w1 = 1, w2 = 10, w3 = 7, w4 = 3, w5 = 10, and
w6 = 1. The addressing mode costs must be multiplied
with the corresponding node weights. For this example we
limit the domain of offset values to set of {0, 1, 2} to keep
the matrices small. Of course the real implementation of the
algorithm has to take the whole domain of available values
into account (see Section 3) and sparse matrix representa-
tions are required.

Let us construct the cost matrix of empty node (1). Since
the node does not contain a statement which accesses mem-
ory or modifies the address register, we treat it is an add
instruction with zero increment. For each offset pair in the
the domain we find the cheapest addressing mode. Hence,
we can only parameterize the constant of the add instruction
we have for every add instruction only one choice to select
the minimal costs.

4

C1 =




0 1 1
1 0 1
1 1 0




am 0 1 2
0 ar+=0 ar+=1 ar+=2
1 ar-=1 ar+=0 ar+=1
2 ar-=2 ar-=1 ar+=0

The matrix C1 represents the costs for all offsets pairs.
The table on the right-hand side of the matrix gives the
associated addressing modes. Note that the rows relate to
the entry offset values and the columns to the exit offset
values. Any transition from an entry offset value to an exit
different offset value needs an add instruction to be inserted
with the costs of 1. If the entry and exit offset values are
identical the add instruction can be eliminated since it has
a zero increment.

The matrix for node (2) and the associated addressing
modes is given as follows:

C2 = 10




1 1 1
0 1 1
1 0 1




am 0 1 2
0 ar+=1 ar+=2 ar+=3
1 ar+=0 ar+=1 ar+=2
2 ar-=1 ar+=0 ar+=1

Node (2) is executed 10 times and therefore the cost matrix
is multiplied by a factor of 10. Moreover, the cost matrix
contains two elements whose values are zero. The associ-
ated addressing modes of those elements eliminate the add
instruction. For all other offset pairs the add instruction re-
mains in the program.

The statement *(ar) of node (3) imposes a more com-
plex cost matrix and addressing mode table. For one offset
pair there can be more than one choice. For such a case we
have to take the addressing mode with the cheapest costs. In
addition some offset pairs require additional add instruction
to update the value of the address register. The cost matrix

of node (3) is given by C3 = 7




0 0 0
1 0.2 1
1 1 0.2




where the addressing mode table is listed below
am 0 1 2

0 *(ar) *(ar++) *(ar+=2)
1 ar-=1;*(ar) *(ar+1) ar-=1;*(ar+=2)
2 ar-=2;*(ar) ar-=2;*(ar++) *(ar+2)

The zeros in the first row result from the post modifi-
cation addressing mode and the elements in the remaining
diagonal whose values are 0.2, result from the indexing ad-
dressing mode. For all other offset pairs an add instruction
must be inserted.

The cost matrices and addressing mode tables of nodes
(4) and (5) are constructed akin to previous statments.

C4 = 3




0.2 1 1
0 0 0
1 1 0.2


 , C5 = 10




0.2 1 1
1 0.2 1
0 0 0




For node (6) we obtain the same cost matrix as already
presented for node (1), i.e. C1 = C6.

The objective of the AMS is to select offset values for the
address register for all entries and exits of CFG nodes. The
entry- and exit-values define the cost function which has to
be optimized.

Definition 2 For all CFG nodes n ∈ V , let en be then
entry-value of n, xn the exit-value of n and Cn the cost
matrix of n. Then the cost function for the AMS is given by

f =
∑
n∈V

Cn(en, xn). (1)

Given this definition alone, minimizing the cost function
would be trivial. As already shown in Figure 2 the exit
and entry offset values of two subsequent statements must
match. For a CFG node which may have several successors
we can generalize previous observation.

xn = em ∀m ∈ SUCC(n) (2)

Offset values are propagated along CFG edges and enforces
a consistent offset value between two subsequent state-
ments. The constraint imposes also a partitioning of edges.
In a partition, all the entry- and exit-offsets of their associ-
ated edges must have the same offset value.

The condition above can only be relaxed if an use of an
address register can not be reached in any path starting from
the join point, then a consistent offset value is not needed
at the join point. An easy way to handle this exception is
to perform a liveness analysis prior to the AMS algorithm
and exclude all CFG nodes and edges, where the address
register is not alive.

For solving the AMS problem we map the original CFG
to a new graph. A node of this new graph aggregates all
CFG edges which belong to one edge partition and repre-
sents this set of edges as a node. An edge in the new graph
is a CFG node. Since the new graph is directed, the direc-
tion is given by the constraint. This means, the source of a
CFG node is associated with the constraint which uses the
entry offset – the target of the CFG node is associated with
the constraint which uses the exit offset. For the start and
end node of a CFG node we would not have source and tar-
get nodes and therefore we introduce artificial nodes (⊥ and
�).

This new graph allows a natural mapping to the PBQP
problem and is identical to the PBQP graph as introduced
in [8]. The PBQP problem optimizes the cost function by
choosing only one offset value for one node in the PBQP
graph.

The offset value constraints have a graph property. Edges
can be partitioned into edge classes. An edge class is given
by following definition.

Definition 3 The set L = {l1, . . . , ln} is the set of CFG
edge classes. Two edges ei, ej ∈ E are in the same

5

edge class lk iff target(ei) = target(ej) or source(ei) =
source(ej).

An edge class is the transitive hull of all edges which
have common source or target (an edge class is a zig-zag
pattern in the CFG). With definition 3 the PBQP graph con-
struction algorithm can be formulated:
(1) group all edges in the CFG into edge classes
(2) generate a PBQP edge for each CFG node n from PBQP
node li to lj , where ∀p ∈ PRED(n) : p ∈ li and
∀s ∈ SUCC(n) : s ∈ lj .
(3) add entry node � and exit node ⊥
(4) generate a PBQP edge for the CFG entry node n from
PBQP node � to li, where ∀s ∈ SUCC(n) : s ∈ li.
(5) generate a PBQP edge for the CFG exit node n from
PBQP node li to ⊥, where ∀p ∈ PRED(n) : p ∈ li.

Figure 3 shows the CFG and the related PBQP graph of
our example. It consists of three edge classes (a, b, c) and
the entry and exit classes (�, ⊥). As there are no register
definitions in the program, all CFG nodes and edges are
included in the PBQP graph construction process.

3 Algorithm

After generating a PBQP problem from the AMS cost
model, the PBQP problem must be solved. This is done
by employing the PBQP solver introduced in [8]. In this
section we want to give an overview of the solve algorithm.

The solver is based on a dynamic programming approach
which works in three phases. In the first phase the PBQP
graph is reduced. In each reduction dynamic programming
eliminates a node of the graph until only degree zero nodes
remain. In the second phase for each node a state with min-
imal cost is selected. In the third phase the minimal cost
states are selected for all reduced nodes by reversing the
reduction process.

In the first phase reduction rules are applied to nodes
with degree one and two. These reductions do not destroy
the optimality of the PBQP. If this is not possible, i.e. at
some point of the reduction process there are only nodes
with degree three or higher in the graph, a heuristic must be
applied. The crucial point is now that for the AMS prob-
lem almost all graphs can be reduced without applying the
heuristic. So the solution is optimal for almost all graphs.
The reason is that the PBQP graphs are derived from the
CFGs of the input program, whereas the CFGs of the in-
put program are generated from a structured high level lan-
guage - in our case C. Almost all control flow which can
be formulated in C result in reducible PBQP graphs. There
are some exceptions, like the goto statement and program
transformations, which produce non reducible graphs.

The directions of the PBQP graph edges indicate the ’di-
rections’ of the cost matrices. In other words, changing the

direction of an edge means to transpose the cost matrix of
the edge.

Definition 4 Let �c(x) be the cost vector of node x ∈ L. Let
Cxy be the cost matrix of edge (x, y) ∈ F or the transposed
cost matrix of edge (y, x) ∈ F .

Figure 4 shows the pseudo code of the reduction algo-
rithm. The algorithm yields optimal solutions as long as
only ReduceI and ReduceII reductions are applied. If a Re-
duceN reduction must be applied the result of the heuristic
depends on which node is selected for the ReduceN reduc-
tion. But we have seen that ReduceN reductions are so rare
that no special effort is taken to a select a node. In our im-
plementation the node with highest degree is selected, be-
cause it eliminates most edges when it is reduced.

The reduction procedures ReduceI, ReduceII and Re-
duceN use the basic operations vmin and mmin which im-
plement dynamic programming. The vmin operation is used
in the ReduceI reduction and calculates a cost vector which
is added to the reduced node’s adjacent node. The mmin op-
eration is used in the ReduceII reduction and calculates the
cost matrix of the resulting edge.

Definition 5 Let �c be a vector and C, C′ be matrices.
Function vmin(�c, C) is defined by vector �x where �x(i) =
mink �c(k)+C(k, i). Function mmin(C,�c, C′) is defined by
matrix X where X(i, j) = mink C(i, k) + �c(k) + C′(k, j)

After reduction only nodes with degree zero remain and
the state can be selected by finding the index of the mini-
mum vector element. The state of all nodes can be selected
by reconstructing the PBQP graph in the reverse order of
reductions. the pseudo code of the state selection phase.

In the sequel we show the reduction process for our ex-
ample. The reduction steps are depicted in figure 5. First,
we normalize the BPQP graph. The only required action in
the example graph is to combine edges 3 and 4. The result-
ing matrix is the sum of matrix C3 and C4 which yields

C34 =




0.6 3 3
7 1.4 7
10 10 2




The first step is the reduction of the degree-one nodes � and ⊥
which adds two vectors (0 1 1) to the node vector a. The resulting
node vector is va = (0 2 2). The remaining cycle of three nodes
is reduced by reducing (any) node with the ReduceII reduction. In
the example we select node b. The new edge gets a matrix of

C234 =




0.2 0.2 0.2
−9.8 −7 −7
−3 −9.8 −3




In the next step normalization is necessary by combining edges
234 and 5 by adding C(234) and C(5)T .

C2345 =




0.4 10.2 0.4
0.2 −6.8 −7
7 0.2 −3


 .

6

procedure ReduceI(x)
begin

{y} := adj (x)
	cy := 	cy + vmin(cx, Cxy)
PushVertex(x);

end
procedure ReduceII(x)
begin

{y, z} := adj (x)
if (y, z) ∈ F then

Cyz := Cyz + mmin(Cyx,	cx, Cxz)
else

add edge (y, z)
Cyz := mmin(Cyx,	cx, Cxz)

endif
PushNode(x)

end
procedure ReduceN(x)
begin

forall nodes y ∈ adj (x) do
	cx := 	cx + vmin(cy, Cyx)

endfor
sx = imin (cx)
forall nodes y ∈ adj (x) do

	cy := 	cy + Cyx(:, sx)
endfor
PushNode(x)

end
procedure ReduceGraph
begin

while ∃n : deg(n) > 0 do
if deg(n) = 1 then

ReduceI(n);
elsif deg(n) = 2 then

ReduceII(n);
else

ReduceN(n);
endif

endwhile
end
procedure PropagateSolution
begin

forall nodes x where deg(x) = 0 do
sx := imin (cx)

endfor
while reducible stack not empty do

pop node x from reducible stack
	c := 	cy ;
forall nodes y ∈ adj (x) do

	c := 	c + Cyx(:, sx);
endfor
s(x) = imin (c);

endwhile
end

Figure 4. PBQP Solver

c
c

a

b

c

a

a

b

c

1

2

34

2342

5
34

5 56

Figure 5. Reduction sequence

The last reduction step is a ReduceI of node a. The only remain-
ing node is c with vector {0.4,−4.8,−5} and the state can be
selected by taking the index of the minimal element −5: sc = 2.
The minimal element −5 represents the total cost of the optimiza-
tion. It should be negative, because the optimization should bring
a benefit, rather than costs. Now the reduction process is reversed
and states are selected for all nodes in the order sa = 1, sb = 0,
sc = 2, sbot = 0, stop = 0.

The solution of the PBQP problem yields a state in each node
of the PBQP graph. The states are then transferred to the CFG. The
entry value en of node n is the PBQP state of the predecessor edge
class of n, the exit value xn if the PBQP state of the successor edge
class of n. The selection of the addressing mode for an instruction
is done by selecting the am with the minimum cost which contains
the pair 〈i, j〉. Add instructions with zero adding constants can be
deleted.

In our example the entry and exit values can be obtained from
the predecessor and successor edge values respectively: e1 = 0,
x1 = 1, e2 = 1, x2 = 0, e3 = 0, x3 = 2, e4 = 0, x4 = 2,
e5 = 2, x5 = 1, e6 = 1, x6 = 0. From this entry and exit values
the output program, which is already shown in section 1, can be
generated.

The dimension of the vectors and matrices used in the PBQP
algorithm is the number of available values which an address reg-
ister may contain, that is |D|. In practice this number is very large
(e.g. 216 or 232). Although the number is constant it is not possible
to implement such large vectors and matrices as arrays of values.
To get a handle on the problem, a sparse representation vector and
matrix representation is used.

The vector is expressed by a set of cost regions {r1, . . . , rn}.
A region is an interval which has a lower and upper bound and an
associated cost value. A vector element i is defined as

	v(i) = min
i∈[lower(r),upper(r)]

cost(r) (3)

the cost value of the cost region r with minimal costs whereby i is
in the interval of the cost region.

Matrices are also represented as a set of cost regions. For ma-
trices a cost region consists of three intervals: a row interval, a
column interval and a main diagonal interval. This three intervals
define a six sided region in the matrix. Again a cost value is asso-
ciated to the region. Similar to vectors, matrix elements of spare
matrices are defined as

C(i, j) = min
i∈[lowerrow(r),upperrow(r)]

j∈[lowercolumn(r),uppercolumn(r)]
i+j∈[lowerdiagonal(r),upperdiagonal(r)]

cost(r) (4)

7

Register

Allocator

Code

SelectorOptimizations

High Level

Optimization

VLIW

Scheduler

AMSOffset

Assignment

Figure 6. Compiler Phases

All operators between vectors and matrices are implemented
to perform on cost regions. The operators include vector addition,
matrix addition, matrix transpose, vmin and mmin. As the opera-
tions require to be performed on all regions of the operands, the
worst case complexity is high. The highest effort results from the
mmin operation, which is m ∗ n ∗ o in the worst case, where m
and n are the number of regions in the matrices, respectively and
o is the number of regions in the vector. To overcome the prob-
lem of the high computational effort simplification is performed
after each operation. The simplification reduces the number of
regions in the region set. This includes removing redundant re-
gions and shrinking or merging partly redundant regions. As we
have seen from our experimental results, the number of regions
can be reduced significantly with simplification and therefore the
real complexity stays within acceptable bounds.

4 Experimental Results

We have integrated the AMS algorithm in the CC7705x C-
Compiler for the NEC uPD7705x DSP family. The uPD7705x is
a 32 bit fixed point DSP that has VLIW features. Seven func-
tional units (two MAC, two ALUs, two load/store, one system
unit) can execute up to four instructions in parallel. In contrast
to conventional VLIW architectures, the execution packet length
of the uPD7705x is variable. So there is no code size overhead
if an execution packet does not include the maximum of four in-
structions. The load/store units of the uPD7705x facilitates various
addressing modes for 8 address registers. Most of the addressing
modes of the uPD7705x are discussed in Section 2, e.g. indirect
addressing, post increment/decrement, indexing, post modification
with offset register. In addition post modification can wrap around
a modulo value to implement circular buffers. Furthermore, a bit
reverse addressing mode can be selected for efficiently accessing
FFT buffers. All of these addressing modes can be modeled by
the AMS algorithm whereas the bit reverse addressing mode and
the modulo addressing modes require some additional optimiza-
tion components than presented in this paper.

The structure of the compiler is depicted in Figure 6. Address-
ing mode related optimizations are performed between register al-
location and scheduling on a low-level intermediate representation
that is related to the uPD7705x assembly language. The address-
ing mode selection is performed after assigning the offsets for the
function stack frames [7]. Because of the enormous complexity
it is not possible to combine all these phases into one overall op-
timization problem. Therefore register allocation, offset assign-
ment, AMS and scheduling is performed in separate steps.

The AMS algorithm runs for each address register separately.

Benchmark # of max avg
graphs nodes nodes

mp3 419 2009 134.66
gsm 900 1930 143.07
aac 487 1509 85.84
trcbk 6 20 15.33
cfirc 16 61 37.62
firc 44 58 31.32
iirc 6 25 16.33
iirbiqc 13 65 35.00
lmsc 15 70 34.73
matmult 8 26 18.62
vadd 6 15 9.67
vdot 4 8 6.50
vmin 4 13 8.25
vmult 6 15 9.67
vnorm 3 8 6.00

Table 1. Problem Size of Benchmarks

Two of the address registers are used as “floating-frame-pointers”.
They are used to access two stack frames (one address register
per stack frame). As a result of the AMS optimization, the frame
pointers do not point to the beginning of the stack frames, but may
point to any location within the execution of a function to utilize
the addressing modes in the most optimal way.

We have conducted experiments with a number of DSP bench-
marks. The first group of benchmarks contains three complete
DSP applications: AAC (advanced audio coder), MPEG, and
GSM (gsm half rate). All three benchmarks are real-world appli-
cations that contain some large PBQP graphs. The second group of
benchmarks are DSP-related algorithms of small size. These kind
of benchmarks allow the detailed analysis of the AMS algorithm
for typical loop kernels of DSP applications. All benchmarks are
compiled ’out-of-the-box’4.

The benchmarks and the problem size of the benchmarks are
listed in Table 1. The first column # of graphs shows the num-
ber of PBQP graphs that are solved for the optimizations. The
number of graphs is determined by the number of functions in a
program and the number of used address registers. Note that for
the uPD7705x architecture there is an upper limit of 8 address reg-
isters. The computational complexity of AMS mainly depends on
the number of nodes in a PBQP graph. The second column max
nodes of Table 1 gives the number of nodes for the largest graph
in the benchmark suite. In the last column avg nodes shows the
average number of nodes for a benchmark.

In the following we give some performance details of the PBQP
solver. Almost all PBQP graphs can be solved optimally. The most
frequent reductions are ReduceI (60.9%), followed by ReduceII
(25.4%), and 13.6% of all nodes have degree zero. Only 8 reduc-
tions out of 230481 reductions are ReduceN reductions which are
solved by heuristics. One of the most important observation of
our experiments is that the result of the address mode selection is
optimal in almost all benchmarks.

Our PBQP solver employs sparse representation techniques of

4This means that the benchmark source codes are not rewritten and
tuned for the CC7705x compiler.

8

0 500 1000 1500 2000

Number of Nodes

0

50

100

150

200

M
ax

. N
um

be
r

of
 R

eg
io

ns

(a) Vector Regions

0 500 1000 1500 2000

Number of Nodes

0

500

1000

1500

M
ax

. N
um

be
r

of
 R

eg
io

ns

(b) Matrix Regions

Figure 7. Max. Number of Regions

large vectors and matrices. Figure 7 illustrates the relation be-
tween number of nodes in a PBQP graph and the maximum num-
ber of regions occurring in a vector and matrix respectively. As in
the graph depicted the maximum number of regions does not cor-
relate with the number of nodes. In practice the maximum number
of regions is bounded and does not grow exponentially which is
essential for AMS. Table 2 shows the compile-time overhead of
AMS compared to the overall compile time in percent. It ranges
from 4 to 9%. This is within acceptable bounds for a production
DSP compiler, taking the high code improvements into account.
The table also shows that the overhead for the large applications
is not significant higher than for the small benchmarks. This indi-
cates that the AMS scales almost linear with the problem size.

In the sequel we show the performance results of the AMS op-
timization in comparison with not applied AMS optimization. For
the benchmark we evaluated the achieved code reduction and run-
time improvements for different parameterizations of the compiler.
The baseline is a code which is generated after strength reduction.
The address register is set up only before the first access, but access
and update instructions are not combined. All compiler optimiza-
tions are performed in the baseline, except AMS.

In the best case our AMS algorithm achieves code-size reduc-
tions up to 50% and speedups of more than 60%. Since we have a
VLIW architecture, where add instructions can be scheduled with-
out the penalty of additional execution cycles, we measured the
effect of AMS by emitting VLIW code and by linear code. More-
over, we conducted experiments with two different cost models.
The first cost model minimizes execution time and the second
cost model minimizes code size. In Figure 8(a)-(b) the code re-

Benchmark percent
mp3 8.90
gsm 4.77
aac 7.57
trcbk 4.65
cfirc 4.24
firc 4.90
iirc 3.69
iirbiqc 6.59
lmsc 5.14
matmult 5.69
vadd 6.09
vdot 5.76
vmin 6.54
vmult 6.92
vnorm 5.80

Table 2. Compile time overhead of AMS

ductions of the benchmark programs with linear and VLIW code
are depicted whereas Figure 8(c)-(d) shows runtime improvement
achieved by AMS.

We used different models for execution time and code size opti-
mizations. The execution time model reflects the execution cycles
and delay cycles of the target instructions. The costs are weighted
with estimated execution counts of the basic blocks. The execution
count estimation is based on the loop structure of the function. It
turned out that the accuracy of the estimation is sufficient for our
purpose. As the AMS algorithm is performed for each function
separately, recursive functions are not considered in the execution
count estimation. The cost model for code size optimization is de-
rived from the instruction code length of the target hardware. The
costs of addressing modes directly correspond to the addressing
modes code size. In the code size model the costs are not weighted
with the execution count of the basic blocks.

The execution time improvements are significant larger for
small benchmarks than for bigger applications. Nevertheless,
there are impressive code size reductions for bigger applications,
e.g. GSM. The reason is that small benchmarks mainly contain
kernels of typical DSP algorithms. The execution time improve-
ments, which are achieved in the kernel loops, directly effects the
overall improvement. For larger application more “control code”
(e.g. function calls) is executed, which gives less opportunity for
runtime improvements. However, as shown in Figure 8(a)-(b) the
code-size of larger applications can be significantly reduced. For
some small benchmarks, e.g. trcbk, there is no improvement at all
since there is no potential to optimize the addressing mode selec-
tion in this cases.

For our target architecture the compiler is able to schedule add
instructions without the penalty of additional execution cycles.
Even if the AMS optimization is disabled, the scheduler might
find a free VLIW slot for placing add instruction of address regis-
ter. In order to simulate a architecture without VLIW capabilities
we conducted performance experiments on linear code (no VLIW
code is generated). The code size improvements are roughly the
same as with VLIW code generation but the execution time im-
provements are considerable larger. Another major contribution

9

m
p3

gs

m

aa
c

trc
bk

cf

irc

fir
c

iir
c

iir
bi

qc

lm
sc

m

at
m

ul
t

va
dd

vd

ot

vm
in

vm

ul
t

vn
or

m
 0

10

20

30

40

50

60

70

R
ed

uc
tio

n
(%

)

optimized for run-time
optimized for code-size

m
p3

gs

m

aa
c

trc
bk

cf

irc

fir
c

iir
c

iir
bi

qc

lm
sc

m

at
m

ul
t

va
dd

vd

ot

vm
in

vm

ul
t

vn
or

m
 0

10

20

30

40

50

60

70

R
ed

uc
tio

n
(%

)

optimized for run-time
optimized for code-size

(a) Code-Size Reduction (linear code) (b) Code-Size Reduction (VLIW code)

m
p3

gs

m

aa
c

trc
bk

cf

irc

fir
c

iir
c

iir
bi

qc

lm
sc

m

at
m

ul
t

va
dd

vd

ot

vm
in

vm

ul
t

vn
or

m
 0

10

20

30

40

50

60

70

Im
pr

ov
em

en
t (

%
)

optimized for run-time
optimized for code-size

m
p3

gs

m

aa
c

trc
bk

cf

irc

fir
c

iir
c

iir
bi

qc

lm
sc

m

at
m

ul
t

va
dd

vd

ot

vm
in

vm

ul
t

vn
or

m
 0

10

20

30

40

50

60

70

Im
pr

ov
em

en
t (

%
)

optimized for run-time
optimized for code-size

(c) Run-time Improvement (linear code) (d) Run-time Improvement (VLIW code)

Figure 8. Run-time Improvement and code-size reduction

of our experiments is that in VLIW architectures the performance
gain of addressing modes deteriorates.

5 Conclusion

Conventional optimization techniques can not handle the ad-
dressing mode features of modern DSP architectures. This work
presents a novel approach for exploiting addressing modes of
DSPs. Even complex addressing modes can be utilized by a com-
piler and, therefore, it is a further step towards implementing criti-
cal DSP applications in a high level language rather than in assem-
bly code.

Embedded CPU architecture design often involves a trade-off
between “application specific” and “compiler friendly”. With the
presented algorithm a wide range of addressing mode implementa-
tions can be modeled. Therefore, the addressing mode design can
be targeted to the application area without loosing the opportunity
for best support of the compiler. Changes in the addressing mode
design can be brought in the compiler by simply changing the cost
model of the AMS algorithm.

As the runtime improvements are up to 60% and code-size re-
ductions up to 50%, we can state that the optimization is of vital
importance for architectures which provide complex addressing
mode features.

References

[1] E. Eckstein and A. Krall. Minimizing cost of local variables
access for DSP-processors. In Proceedings of LCTES’99,
1999.

[2] G. Ottoni et al. Optimal live range merge for address register
allocation in embedded programs. In Proceedings of CC’01,
2001.

[3] S. Liao et al. Storage assignment to decrease code size. ACM
TOPLAS, 18(3):235–253, May 1996.

[4] Sudarsanam et al. Analysis and evaluation of address arith-
metic capabilities in custom dsp. Proceedings of Design and
Automation of Embedded Systems, 4(1), Jan 1999.

[5] R. Leupers, A. Basu, and P. Marwedel. Optimized array index
computation in DSP programs. In Proceedings of Asia and
South Pacific Design Automation Conference, 1998.

[6] R. Leupers and F. David. A uniform optimization technique
for offset assignment problems. In Proceedings of ISSS, 1998.

[7] Stan Liao. Code Generation and Optimization for Embedded
Digital Signal Processors. PhD thesis, 1996.

[8] B. Scholz and E. Eckstein. Register allocation for irregular
architecture. In Proceedings of LCTES/SCOPES’02, 2002.

10

